

A Fixed Point Theorem on Reciprocally Continuous Self Maps

Jyoti Nema and K Qureshi

Department of Mathematics NRI Institute of Information Science and Technology Bhopal

ABSTRACT

The aim of this paper is to prove a unique common fixed point theorem which generalizes the result of Aage C.T. and Salunke J.N. by weaker conditions. The conditions continuity and completeness of a metric space are replaced by weaker conditions such as compatible pair of reciprocally continous self maps.

Keywords: Reciprocally continuous, compatible maps , fixed point, self maps

INTRODUCTION

According to G. Jungck [4] two self maps S and T of a Metric Space (X,d) are said to be compatible mappings if $\lim_{n\to\infty} d(STx_n, TSx_n)=0$ whenever $\langle x_n \rangle$ is a sequence in X such that $\lim_{n\to\infty} Sx_n = \lim_{n\to\infty} Tx_n = t$ for some t belongs to X.

Two self maps S and T of a Metric Space (X,d) are said to be Reciprocally continuous if $\lim_{n\to\infty} STx_n$ =St and $\lim_{n\to\infty} TSx_n$ =Tt whenever $\langle x_n \rangle$ is a sequence in X such that $\lim_{n\to\infty} Sx_n$ = $\lim_{n\to\infty} Tx_n$ = t for some t belongs to X.

Definition 1.1: A function $\phi : [0,\infty) \to [0,\infty)$ is said to be a contractive modulus if $\phi(0) = 0$ and $\phi(t) < t$ for t > 0.

Definition 1.2: A real valued function φ defined on $X \subseteq R$ is said to be upper semicontinuous if $\lim_{n\to\infty} \varphi(t_n) \le \varphi(t)$, for every sequence $\{t_n\} \in X$ with $t_n \to t$ as $n \to \infty$.

Aage C.T. and Salunke J.N. [1] proved the following theorem:-

Theorem A: Suppose S, I, T and J are four self mappings of a complete metric space (X, d) into itself satisfying the conditions (i) $S(X) \subset J(X), T(X) \subset I(X)$. (ii) $d^2(Sx, Ty) \le \max\{\varphi(d(Ix, Jy))\varphi(d(Ix, Sx)), \varphi(d(Ix, Jy))\varphi(d(Jy, Ty)), \varphi(d(Ix, Sx))\varphi(d(Jy, Ty)), \varphi(d(Ix, Ty))\varphi(d(Jy, Sx))\},$ for all x, y $\in X$. (iii) φ is contractive modulus as in definition (1.2). (iv) one of S, I, T and J is continuous. And if (v) the pairs (S, I) and (T, J) are compatible of type (A). Then S, I, T and J have a unique common fixed point.

Now we prove the following theorem.

Theorem B. Suppose S, I, T and J are four self mappings of a metric space (X, d) into itself satisfying the conditions

(i) $S(X) \subset J(X), T(X) \subset I(X).$

(ii)d²(Sx, Ty) $\leq \max \{ \varphi(d(Ix, Jy)) \varphi(d(Ix, Sx)), \varphi(d(Ix, Jy)) \varphi(d(Jy, Ty)), \varphi(d(Ix, Sx)) \varphi(d(Ix, Sx)) \varphi(d(Jy, Ty)), \varphi(d(Ix, Ty)) \varphi(d(Jy, Sx)) \}, \}$

for all $x, y \in X$.

(iii) φ is contractive modulus as in definition (1.2).

(iv) the pairs (S, I) and (T, J) are compatible pairs of reciprocally continuous mappings.

Then S, I, T and J have a unique common fixed point.

Proof: Let x_0 in X be arbitrary. Choose a point x1 in X such that Sx0 = Jx1. This can be done since $S(X) \subset J(X)$. Let x2 be a point in X such that Tx1 = Ix2. This can be done since $T(X) \subset I(X)$. In general we can choose x2n, x2n+1, x2n+2,... such that Sx2n = Jx2n+1 and Tx2n+1 = Ix2n+2, so that we obtain a sequence

 $Sx0, Tx1, Sx2, Tx3, \cdots$ (1)

Taking condition (i). (ii) and (iii) as in Aage and Salunke [1] $\{Sx2n\}$ is a Cauchy sequence and consequently the sequence (1) is a Cauchy. The sequence (1) converges to a limit z in X. Hence the subsequences $\{Sx2n\} = \{Jx2n+1\}$ and $\{Tx2n-1\} = \{Ix2n\}$ also converge to the limit point z.

Suppose that the pair (S,I) is compatible pair of reciprocally continuous.By the definition of reciprocally continuous, there is a sequence $\langle x_n \rangle$ in X such that

 $Sx2n \rightarrow z, Ix2n \rightarrow z$ then $SIx2n \rightarrow Sz, ISx2n \rightarrow Iz$ as $n \rightarrow \infty$(2) Since the pair (S, I) is compatible we have $Sx2n \rightarrow z, Ix2n \rightarrow z$ as $n \rightarrow \infty$ and $\lim d(SIx_{2n}, ISx_{2n}) = 0.$...(3) n→∞ using (2) and (3) we get d(Sz, Iz) = 0 or Sz = Iz. Since Sz=Iz, . Now by (ii) $d^{2}(Sz, Tx2n+1) \leq \max \{ \varphi(d(Iz, Jx2n+1)) \varphi(d(Iz, Sz), \} \}$ $\phi(d(Iz, Jx2n+1))\phi(d(Jx2n+1, Tx2n+1)),$ $\varphi(d(Iz,Sz))\varphi(d(Jx2n+1,Tx2n+1)),$ $\varphi(d(Iz, Tx2n+1))\varphi(d(Jx2n+1, Sz))\}.$ $Jx2n+1 \rightarrow z$, $Tx2n+1 \rightarrow z$ as $n \rightarrow \infty$ and Iz = Sz, so letting $n \rightarrow \infty$ we get $d^{2}(Sz, z) \leq \max{\{\varphi(d(Sz, z))\varphi(d(Sz, Sz))\}}$ $\varphi(d(Sz, z))\varphi(d(z, z)),$ $\varphi(d(Sz, Sz))\varphi(d(z, z)),$ $\varphi(d(Sz, z))\varphi(d(z, Sz))\},$ $= \varphi(d(Sz, z))\varphi(d(z, Sz))$ i.e. $d(Sz, z) \le \varphi(d(Sz, z)) \le d(Sz, z)$. Hence $\varphi(d(Sz, z)) = 0$ i.e. Sz = z Thus $S_Z = I_Z = Z$ Further Since $S(X) \subset J(X)$, there is a point $w \in X$ such that z = Sz = Jw.Now we prove that Jw= Tw. Now by (ii)

$$\begin{split} d^2(Sz, w) &\leq \max \left\{ \phi(d(Iz, Jw)) \phi(d(Iz, Sz)), \phi(d(Iz, Jw)) \phi(d(Jw, Tw)), \\ \phi(d(Iz, Sz)) \phi(d(Jw, Tw)), \phi(d(Iz, Tw)) \phi(d(Jw, Sz)) \right\} \\ &= \max \left\{ \phi(d(Jw, Jw)) \phi(d(Jw, Jw)), \phi(d(Jw, Jw)) \phi(d(Jw, Tw)), \\ \phi(d(Jw, Jw)) \phi(d(Jw, Tw)), \phi(d(Jw, Tw)) \phi(d(Jw, Jw)) \right\} \\ &\text{so } d^2(Jw, Tw) &\leq 0 \text{ implies } d(Jw, Tw) = 0 \text{ , hence } z = Jw = Tw. \end{split}$$

Since the pair (T, J) is compatible pair of reciprocally continuous. By the definition of reciprocally continuous, there is a sequence $\langle x_n \rangle$ in X such that

$$Tx2n \rightarrow z, Jx2n \rightarrow z$$
 then $TJx2n \rightarrow Tz, JTx2n \rightarrow Jz$ as $n \rightarrow \infty$(4)

Since the pair (T,J) is compatible we have $Tx2n \rightarrow z, Jx2n \rightarrow z$ as $n \rightarrow \infty$ and

$$\lim_{n \to \infty} d(TJx_{2n}, JTx_{2n}) = 0. \tag{5}$$

using (4) and (5) we get

$$\begin{split} d(Tz, Jz) &= 0 \text{, hence } Tz = Jz. \text{ Now} \\ d^2(z, Tz) &= d^2(Sz, Tz) \\ &\leq \max \{ \varphi(d(Iz, Jz)) \varphi(d(Iz, Sz)), \varphi(d(Iz, Jz)) \varphi(d(Jz, Tz)), \\ & \varphi(d(Iz, Sz)) \varphi(d(Jz, Tz)), \varphi(d(Iz, Tz)) \varphi(d(Jz, Sz)) \} \\ &= \max \{ \varphi(d(z, Tz)) \varphi(d(z, z)), \varphi(d(z, Tz)) \varphi(d(Tz, Tz)), \\ & \varphi(d(z, z)) \varphi(d(Tz, Tz)), \varphi(d(z, Tz)) \varphi(d(Tz, z)) \} \\ &= \varphi(d(Tz, z)) \varphi(d(Tz, z)) \end{split}$$

implies that $d(Tz, z) \le \varphi(d(Tz, z)) \le d(Tz, z)$. Hence $\varphi(d(Tz, z)) = 0$ i.e. Tz = z and z = Tz = Jz. So z is a common fixed point of S, I, J and T.

Uniqueness:

Let z' be another common fixed point of S, I, J and T. i.e. z' = Sz' = Iz' = Tz' = Jz'. From condition (ii) we have $d^2(z,z') = d^2(Sz, Tz')$ $\leq \max \left\{ \varphi(d(Iz, Iz')) \varphi(d(Iz, Sz)) \right\} = \varphi(d(Iz, Iz')) \varphi(d(Iz', Tz')) \varphi(d(Iz', Tz'))$

 $\leq \max \{ \varphi(d(Iz, Jz'))\varphi(d(Iz,Sz)), \varphi(d(Iz, Jz'))\varphi(d(Jz', Tz')) \\ \varphi(d(Iz,Sz))\varphi(d(Jz', Tz')), \varphi(d(Iz, Tz'))\varphi(d(Jz',Sz)) \} \\ = \max \{ \varphi(d(z,z')\varphi(d(z,z)), \varphi(d(z,z'))\varphi(d(z',z')), \\ \varphi(d(z,z))\varphi(d(z',z')), \varphi(d(z,z'))\varphi(d(z',z)) \} \\ Therefore d(z,z') \leq \varphi(d(z,z')) \leq d(z,z') \text{ i.e. } \varphi(d(z,z')) = d(z,z'). \text{ Thus}$

d(z,z') = 0 i.e. z' = z. Hence the common fixed point is unique.

REFERENCE

- Aage C.T., Salunke J.N., A note on common fixed point theorems, *Int. Journal of Math. Analysis*, 2(28): 1369-1380(2008).
- [2] Pant R.P. and Padaliya S., Reciprocal continuity and Fixed Point, *Jnanabha*, 29: 137-143(1999).
- [3] Umamaheshwar Rao R., V. Srinivas and P. Srikanath Rao, A Fixed Point theorem on pairs of reciprocally continuous self maps, *Indian J. of Mathematics and Mathematical Sci.*, 3(2): 207-215(2007),.
- [4] Jungck Gerald compatible Mapping and common fixed point, *Inst. J. Math Sci.* **9:** 771-779(1986).